
A Cartesian Grid Embedded Boundary

Method for the Heat Equation and Poisson’s

Equation in Three Dimensions 1,2,3

Peter Schwartz ∗,1,3, Michael Barad 2, Phillip Colella 1,3,
Terry Ligocki 3

Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory,
Berkeley, California 94720 3

Department of Civil and Environmental Engineering, University of California,
Davis, California 95616 2

Abstract

We present an algorithm for solving Poisson’s equation and the heat equation on
irregular domains in three dimensions. Our work uses the Cartesian grid embedded
boundary algorithm for 2D problems of Johansen and Colella (1998, J. Comput.
Phys. 147(2):60–85) and extends work of McCorquodale, Colella and Johansen
(2001, J. Comput. Phys. 173(2):60–85). Our method is based on a finite-volume
discretization of the operator, on the control volumes formed by intersecting the
Cartesian grid cells with the domain, combined with a second-order accurate dis-
cretization of the fluxes. The resulting method provides uniformly second-order
accurate solutions and gradients and is amenable to geometric multigrid solvers.

Key words: Poisson Equation, Heat Equation, Multigrid Methods
PACS: 02.60.Lj, 02.70.Bf, 41.05.+e, 41.20.Cv

∗ Corresponding author
Email address: poschwartz@lbl.gov (Peter Schwartz).

1 Supported by the DARPA BioComp program.
2 Supported by the Computational Science Graduate Fellowship program of the Depart-
ment of Energy, under grant number DE-FG02-97ER25308.
3 Supported at the Lawrence Berkeley National Laboratory by the U.S Department of
Energy: Director, Office of Science, Office of Advanced Scientific Computing, Mathematical,
Information, and Computing Sciences Division under Contract DE-AC03-76SF00098.

Preprint submitted to Elsevier Science 2 November 2004

1 Introduction

In this paper, we present Cartesian grid embedded boundary methods for solving
Poisson’s equation and the heat equation on irregular domains in three dimensions.
In this approach, the irregular domain is discretized as a collection of control volumes
formed by the intersection of the domain with cubic Cartesian grid cells. The pri-
mary unknowns are defined at the centers of the Cartesian cells, while the Laplacian
is approximated by a finite volume discretization on each of the regular or irregular
control volumes. This approach was successfully used in [JC98] and [MCJ01] to solve
these problems in two dimensions. The present work is a generalization of that work
to 3D. The principal new features of the algorithm include the use of bilinear inter-
polation to approximate the fluxes on irregular faces and a more general treatment
of the moving boundaries. In addition, we introduce an alternate lower-order stencil
for computing the flux on a Dirichlet boundary at locations where the boundary ge-
ometry is underresolved on the grid. The latter feature permits the use of multigrid
coarsening of the grid to much coarser levels than in [JC98]. The resulting method is
second-order accurate in space for Poisson’s equation, and second-order accurate in
space and time for the heat equation.

2 Embedded Boundary Discretization of the Laplacian in 3D

The underlying discretization of space is given by rectangular control volumes on a
Cartesian grid: Υi = [ih, (i + u)h], i ∈ ZD, where D is the dimensionality of the
problem, h is the mesh spacing, and u is the vector whose entries are all ones. In the
case of a fixed, irregular domain Ω, the geometry is represented by the intersection of
Ω with the Cartesian grid. We obtain control volumes Vi = Υi ∩Ω and faces A

i±1
2

ed
,

which are the intersection of ∂Vi with the coordinate planes {x : xd = (id ± 1
2
)h}.

Here ed is the unit vector in the d direction. We also define AB
i to be the intersection

of the boundary of the irregular domain with the Cartesian control volume: AB
i =

∂Ω ∩Υi. We will assume here that there is a one-to-one correspondence between the
control volumes and faces and the corresponding geometric entities on the underlying
Cartesian grid. The description can be generalized to allow for boundaries whose
width is less than the mesh spacing or boundaries with sharp trailing edges.

In order to construct finite difference methods, we will need only a small number of
real-valued quantities that are derived from these geometric objects.

• Areas and volumes are expressed in dimensionless terms: volume fractions κi =
|Vi|h−D, face apertures α

i±1
2

ed
= |A

i±1
2

ed
|h−(D−1) and boundary apertures αB

i =

2

|AB
i |h−(D−1). We assume that we can compute estimates of the dimensionless quan-

tities that are accurate to O(h2).
• The locations of centroids, and the average outward normal to the boundary are

given exactly by:

Face centroid: x
i+

1
2

ed
=

1

|A
i+

1
2

ed
|

∫
A

i+
1
2

ed

xdA

Boundary face centroid: xB
i =

1

|AB
i |

∫
AB

i

xdA

Outward normal: nB
i =

1

|AB
i |

∫
AB

i

nBdA

where nB is the outward normal to ∂Ω, defined for each point on ∂Ω. Again,
we assume that we can compute estimates of these quantities that are accurate to
O(h2).

Using just these quantities, we can define conservative discretizations for the diver-
gence operator. Let ~F = (F 1 . . . FD) be a function of x. Then

∇ · ~F ≈ 1

|Vi|

∫
Vi

∇ · ~FdV =
1

|Vi|

∫
∂Vi

~F · ndA

≈ 1

κih

[(∑
±=+,−

D∑
d=1

±α
i±1

2
ed
F d(x

i±1
2

ed
)
)

+ αB
i nB

i · ~F (xB
i)

] (1)

where (1) is obtained by replacing the integrals of the normal components of the

vector field ~F with the values at the face centroids.

We first consider Poisson’s equation on an irregular domain Ω.

∆ψ = ρ on Ω

∂ψ

∂n
= gN on ∂Ω

or

ψ = gD on ∂Ω

(2)

We define a discrete variable φ, φi ≈ ψ(ih). Using the discretization of the divergence

3

e

ee
23

1

Fig. 1. 3d bilinear flux

defined in (1), we can define a discretization of Poisson’s equation as follows.

(∆hφ)i = ρi (3)

(∆hφ)i =
1

κih

[(∑
±=+,−

D∑
d=1

±α
i±1

2
ed
F d

i±1
2

ed

)
+ αB

i F
B

]
(4)

where ρi = ρ(ih), and the fluxes F d and FB are linear combinations of φi and the
boundary values. In practice, we avoid problems arising from arbitrarily small values
of κi in the denominator by solving:

κi(∆
hφ)i = κiρi (5)

The fluxes are given by bilinear interpolation of centered differences. Explicitly, bi-
linear interpolation of fluxes can be written as an iteration of linear interpolation of
fluxes in the two directions that are not normal to the face. For example, given the
face with outward normal e1, with centroid x, define the linearly interpolated flux in
the d (d 6= 1) direction by

F d

i+
1
2

e1

= η
(φi+e1 − φi)

h
+ (1− η)

(φi+e1±ed
− φi±ed

)

h

η = 1− |x · ed|
h

± =

+ x · ed > 0

− x · ed ≤ 0.

(6)

4

The bilinear interpolation of the flux for the face with normal e1 can be written

F
i+

1
2

e1
= ηF d

i+
1
2

e1

+ (1− η)F d

i±ed′+
1
2

e1

η = 1− |x · ed′|
h

± =

+ x · ed′ > 0

− x · ed′ ≤ 0

(7)

where d′ 6= d, d′ 6= 1. See figure 1. We note that the particular choice of bilinear inter-
polation for computing the fluxes is a nontrivial one for obtaining a stable method. In
particular, we also tried using simple linear interpolation based on three of the faces
in figure 1, omitting the face offset along the diagonal. We found that such a method
is unstable for some configurations of adjacent small control volumes, in the sense
that point Jacobi fails to converge for any value of the relaxation parameter. No such
instability was observed for the bilinear scheme. For that reason, we have chosen to
reduce order to a piecewise constant interpolant of the fluxes if all four faces required
for a bilinear interpolant are unavailable.

2.1 Boundary Conditions

For Neumann boundary conditions the flux on the boundary is specified. For Dirichlet
boundary conditions further calculations are necessary. Our primary method, for use
when the geometry is well resolved, is a generalization of the methods described in
[JC98]. Figure 2 shows how this generalizes to 3D.

∂φ

∂n
≈ 1

d2 − d1

(
d2

d1

(φB − φI
1)−

d1

d2

(φB − φI
2)) (8)

Here we have used φB for the value of φ on the boundary, which is given by the
Dirichlet boundary condition. Interpolation from cell centered values determines φI

1

and φI
2 at distance d1 and d2 away from the boundary, respectively.

If all 18 cells are available in figure 2, we make an order O(h2) estimate ∇φ as follows.
Depending on the orientation of the normal, two planes are chosen, P1 and P2. Using
biquadratic interpolation, two values φI

1 and φI
2 are calculated, each requiring 9 values.

5

φ2
I

P2

P1

φ1
I

Bφ

Fig. 2. Diagram of the second order stencil for the gradient normal to the interface.

The gradient is then calculated by fitting a quadratic to the interpolated values and
the value at the interface. We chose the planes P1, P2 to be perpendicular to ed, where
d is given by

{d : nB
d ≥ nB

` , ` = 1, 2, 3}. (9)

In cases where the requisite eighteen cells are not available, we employ a lower order
stencil to estimate the flux to O(h). In 3D this lower order stencil contains at most
eight points including the centroid of the embedded boundary. These eight points
are chosen as follows. We associate each one of the eight possible configurations of
plus or minus signs of the components of the normal vector with one of the octants
in the the coordinate system with origin at the centroid. The stencil consists of the
cell-centers of the seven nearest cells in this octant, excluding the cell-center of the
control volume containing the boundary centroid itself.

From these points we create an overdetermined linear system to estimate ∇φ as
follows:

A · ∇φ = δφ (10)

6

where

A = (δx1, δx2, ..., δx7)
T

δφ = (δφ1, δφ2, ..., δφ7)
T

δxm = xm − xB
i

δφm = φm − φB.

We determine ∇φ using least squares by solving the normal equations:

ATA · ∇φ = AT δφ.

Provided that A contains three linearly independent rows, ATA is invertible. This is
always the case provided the set {xm} contains all points of the form (i + ed)h, plus
at least one other point. If that is not the case, we set ∇φ ≡ 0. These methods lead
to a condition number for ∆h that is bounded independent of κ, and comparable to
that of the uniform grid algorithm.

2.2 Truncation and Solution Error

We define the truncation error in the usual fashion: τi = ρi−∆hφexact
i , where φexact

i =
ψ(ih). We then have the following asymptotic error estimates for the truncation error.
At regular cells

τi = O(h2). (11)

If i is an irregular cell, and the flux on the boundary is second order accurate, as in
(8), then

τi = O
(h
κi

)
. (12)

If we use the flux computation given by (10), the flux on the boundary is first order
accurate, and we have

τi = O
(1

κi

)
. (13)

7

We refer to methods that satisfy truncation error estimates of the form (12) on the
irregular control volumes as being formally consistent. We also define the solution
error εi = φi − φexact

i .

There is one apparent problem with this truncation error estimate: it is only first order
accurate at the boundary. Nonetheless, we observe robust second-order convergence of
the solution in max norm. These two facts can be reconciled using a modified equation
analysis [JC98]. Both methods of calculating the gradient for Dirichlet boundary
conditions, (8) and (10), lead to a second order solution error. This is because, for
Dirichlet boundary conditions, solution error is two orders of accuracy more than the
truncation error on the boundary. On the other hand, in the next section we show
that it is necessary to use (8) to obtain second-order accurate values for ∇φ at the
boundary.

3 Discretizing the Heat Equation

We now consider the heat equation on a moving domain. ψ : R3 × [0,∞] → R is the
unknown and f : R3 × [0,∞] → R is the source term. On a time dependent domain,
we solve

∂ψ

∂t
= ∆ψ + f

∂ψ

∂n
= gN(x, t), x ∈ ∂Ω(t)

or

ψ = gD(x, t), x ∈ ∂Ω(t).

(14)

3.1 Time Discretization for a Fixed Domain

First, we consider the case of a fixed domain, i.e. Ω(t) = Ω independent of time. We
define discrete variables, φi(t), fi(t)

φi(t) ≈ ψ(ih, t), fi(t) ≈ f(ih, t). (15)

This leads to a semi-discrete system of ODEs

8

dφi

dt
= ∆hφi + fi (16)

We discretize this system in time using the L0-stable method [TGA96], which was
also described in [MCJ01], as outlined below.

Denote by I the identity operator and by ∆h
I and ∆h

H the discrete Laplacian with inho-
mogeneous and homogeneous boundary conditions, respectively. We split the timestep
∆t such that

µ1 + µ2 + µ3 = ∆t

µ1 + µ2 + µ4 = ∆t/2.

The update at step n uses the boundary values at the old and new times and also at
an intermediate time tint:

φn+1 = (I − µ1∆
h
I (tnew))−1(I − µ2∆

h
I (tint))

−1 ·
[(I + µ3∆

h
I (told))φ

n + (I + µ4∆
h
H)f(tavg)∆t] (17)

where

told =n∆t

tnew = (n+ 1)∆t = told + µ1 + µ2 + µ3

tint = tnew − µ1 = told + µ2 + µ3

tavg = (told + tnew)/2 = told + µ1 + µ2 + µ4.

For a second-order L0-stable method, following [TGA96], we pick a > 1/2 and

µ1 =
a−

√
a2 − 4a+ 2

2
∆t

µ2 =
a+

√
a2 − 4a+ 2

2
∆t

µ3 = (1− a)∆t

µ4 = (
1

2
− a)∆t.

For a method that uses real arithmetic only, the truncation error is minimized by
taking a = 2−

√
2− ε, where ε is machine precision.

9

It was shown in [MCJ01] for Dirichlet boundary conditions that Crank-Nicolson time
discretization exhibited oscillatory behavior and furthermore was unstable to some
types of forcing at a moving boundary. In [Joh97] this behavior was attributed to
the combination of the neutral stability of Crank-Nicolson at high wave numbers and
the presence of eigenvalues of ∆h with non-trivial imaginary parts, corresponding to
eigenvalues with oscillatory behavior near the boundary.

3.2 Time Discretization for a Moving Domain

In the moving case, the domain Ω is now a function of time, Ω = Ω(t), and the various
geometric quantities can also be computed in a time-dependent way: κi(t), αi+

1
2

ed
(t),

and so on.

The timestep is assumed to satisfy a CFL condition with respect to the normal velocity
v = dx

dt
· n :

|v|∆t
h
< 1.

In the present approach we solve the moving-boundary problem by defining an equiv-
alent fixed-boundary problem for each timestep. Specifically, we solve at each time
step the discretization of the following fixed-boundary problem:

∂ψfixed

∂t
(x, t) = D∆ψfixed(x, t) + f(x, t) (18)

where

ψfixed = ψfixed(x, t), x ∈ Ω(tnew), told ≤ t ≤ tnew

∂ψfixed

∂n
= gextrap

N (x, t), x ∈ ∂Ω(tnew)

or

ψfixed = gextrap
D (x, t), x ∈ ∂Ω(tnew).

(19)

The boundary conditions gextrap
N,D on the fixed boundary are computed by extrapolating

values from the moving boundary to the points on the fixed boundary ∂Ω(tnew) at

10

new old(x ,t)

t

x

new

new new

int(x ,t)

(x ,t)

old(x ,t)old

Fig. 3. Boundary conditions for the equivalent problem are extrapolated for (xnew, tint) and
(xnew, told).

times told and tint, as in (20). Figure 3 shows a one dimensional schematic with time
and figure 4 shows the boundary at two different times.

The steps required in setting up the fixed-boundary problem (19) are:

(1) Extend the domain of φn to Ω(tnew), and define the newly uncovered values by
extrapolation.

(2) Compute boundary values for φn+1 at (xB
i (tnew), told) and (xB

i (tnew), tint).

In Step 1, to estimate the value of φn at the center xi(tnew) of a newly uncovered cell
in Ω(tnew)− Ω(told), we use a quadratic extrapolant from three other cells in Ω(told),
such that the centers of these cells form a line with xi(tnew). We choose whichever
line passing through the centers of the new cell and one of its immediate neighbors
has a direction closest to that of the normal nB

i (tnew). See figure 4.

In Step 2, for each Vi ∈ Ω(tnew) − Ω(told), we choose the j in the intersection of the
3× 3× 3 block of cells with center i and Ω(told) that has the largest boundary area.
For our extrapolation, we define

δ(i, j) = (xB
i (tnew), told)− (xB

j (told), told)

We also need approximations to ∇ψ and ∇∇ψ, which we estimate as follows.

Let ~Gi = ∇ψ(xi(tnew), told)+O(h). Each component of Gd
i is computed separately by

differentiating the quadratic interpolant through three points chosen from φi, φi±ed
,

11

Fig. 4. Centers of cells in Ω(told) are shown with solid circles, and centers of cells in Ω(tnew)
- Ω(told) are shown with unfilled circles. To estimate the value of φn at one of these latter
points, we extrapolate quadratically from values at the centers of three other cells in Ω(told)
forming a line with the new cell center. We pick whichever such line is closest in direction
to the normal at time tnew.

and φi±2ed
, where the sign of ± is chosen so that all points are in Ω(tnew) and therefore

where φn has been computed.

Explicitly, for the d component,

Gd
i = ±1

h
(−3

2
φn

i + 2φn
i±ed

− 1

2
φn

i±2ed
)

or

Gd
i =

1

h
(φn

i+ed
− φn

i−ed
).

depending on whether i is on the end or in the middle of 3 cells.

We estimate second derivatives as follows. Let GGi ≈ ∇∇ψ(xi(tnew), told). The order
of the error in this approximation will vary between one and two, depending on
the local geometry. For derivatives of the form φd,d, we differentiate the quadratic
extrapolant through φi, φi±ed

, and φi±2ed
according to the stencil

12

GdGd
i =

1

h2
(φn

i+ed
− 2φn

i + φn
i−ed

).

This term is second order if i is in the center of the three point stencil and first order
otherwise. For mixed derivatives, (φd,d′ with d 6= d′), we average one, two, three, or
four estimates of the derivative each of which is second order accurate at points of
the form i± ed ± ed′ . For example, assuming that i + ed, i + ed′ , and i + ed + ed′ are
all in Ω(tnew), we include the following in our average:

GdGd′

i =
1

h2
(φn

i+ed+ed′ − φn
i+ed

− φn
i+ed′ + φn

i+ed
).

Given these estimates of ∇ψ and the matrix ∇∇ψ at cell centers, we extrapolate the
boundary conditions using:

gextrap
N = gN(xB

i (told), told) + (nB
j − nB

i) · ~Gi + nB
i · [~G~Giδ(i, j)]

or

gextrap
D = gD(xB

i (told), told) + ~Gi · δ(i, j)

(20)

where as remarked above, j is chosen from among the neighbors of i as the neighbor
with the largest boundary area.

Finally, we linearly interpolate the boundary conditions at (xB
i (tnew), tint) from the

boundary conditions at (xB
i (tnew), told) and (xB

i (tnew), tnew). The former is calculated
and the latter is given as part of the data of the problem.

4 Numerical Results

For our test problems, we compute the max norm of the solution error and truncation
error. For a discrete variable, ξ, the max norm is given by:

||ξ||∞ = max
i
|ξi|,

and the p-norm in 3D is given by:

13

||ξ||p = (
∑

i

|(ξi)phDκi|)
1
p .

4.1 Truncation Error for the Laplacian and Solution Error for Poisson’s equation

We estimate the truncation error of the discretized Laplacian using the test function

f(x, y, z) = sin(x)sin(2y)sin(3z). (21)

Here Ω is a sphere of radius r = 0.392 centered at the origin. Our discretized Laplacian
has inhomogeneous boundary conditions of either Neumann or Dirichlet type. Figures
5 and 6 show that the discretization of the operator has the accuracy anticipated by
(11), (12), and (13). If we set ψ = f , ψ satisfies

∆ψ = −14f on Ω

∂ψ

∂n
=
∂f

∂n
on ∂Ω

or

ψ = f on ∂Ω.

(22)

Figures 13 and 14 show the solution error for Poisson’s equation with Dirichlet bound-
ary conditions (using the higher order stencil) and Neumann boundary conditions.
Figures 7 and 8 show one of the differences between the higher and lower order
Dirichlet stencils. If the lower order stencil is used, ∇φ − ∇φexact = O(h), as ex-
pected. However, for the higher order stencil ∇φ−∇φexact = O(h2). In other words,
our numerical experiments imply that for these cases, at least, our estimated solution
has the asymptotic form φ = φexact+Ch2, where C is a smooth function for the higher
order stencil, but not for the lower order stencil. In figure 9 and 10 we display the
smoothness solution error.

In figures 11 and 12, we show the effectiveness of the multigrid V cycles and W cycles.
We considered mesh sizes of 16, 32, 64, 128, and 256 (only the last three are shown).
Using the test problem (22), we reduced the residual eleven orders of magnitude by
using V cycles and by using W cycles. Figure 11 shows that for each doubling of the
mesh size, four or five more V cycles are required to achieve the same reduction of
the residual. By contrast, increasing the mesh size does not increase the number of

14

W cycles required. On the other hand, W cycles require more work than V cycles and
at these resolutions solving this problem with V cycles takes less computational time
than solving it with W cycles.

4.2 Solution Error for the Heat Equation

Our test problems for the heat equation (14) have as their solution

ψ(x, y, z, t) =
4 exp (−x2+y2+z2

5(t+1)
)

5π(t+ 1)
(23)

satisfying

ψt = ∆ψ + f, (24)

where

f(x, y, z, t) =
4(x2 + y2 + z2 + 5(t+ 1))

125π(t+ 1)3
exp (−x

2 + y2 + z2

5(t+ 1)
).

In the case where the boundary is not moving we solve the Neumann problem on a
computational domain based on an neutrophil. Beginning with slice-data generated by
confocal microscopy, we constructed an implicit function with the following property:
the surface of the neutrophil is implicitly defined by the set of points at which the
implicit function takes the value zero. From this implicit definition, we construct
the volume fractions, apertures, normals, and centroids necessary for Cartesian grid
embedded boundary methods.

We display the solution error in figure 18, the solution in figure 19, and a convergence
study in figure 15.

In the case of a moving boundary, we numerically solve the Neumann and Dirichlet
problems on a spherical domain, with boundary conditions of Neumann or Dirichlet
type computed using the exact solution.

The radius of the sphere changes with time, increasing at a prescribed speed. We
advance the solution in time from t = 0 to t = 0.1875 using a mesh spacing h and
corresponding timestep ∆t such that ∆t/h = 0.5. The number of timesteps equals
0.1875

∆t
and h = 2−n where n = 4, ..., 8. The solution error is shown in figures 16 and

17.

15

5 Conclusion

We have described a Cartesian grid embedded boundary algorithm for solving Pois-
son’s equation and the heat equation on irregular domains in three dimensions. The
resulting method provides uniformly second-order accurate solutions and gradients
and is amenable to geometric multigrid solvers. In the future, we plan on extending
this approach in a variety of directions: to generalize this approach to free boundary
value problems, in which the discretizations used here are used on both sides of the
boundary, combined with jump relations at the boundary, to define a finite-volume
discretization; and to combine this approach for elliptic and parabolic problems with
the approach described in [CGKM] to solve a variety of problems in low-Mach num-
ber flows with fixed and free boundaries. To carry this program out, it will be useful
to extend the approach described here to the case of adaptively refined meshes, for
which the only outstanding issue is the question of discretizing the operator when the
embedded boundary crosses a boundary between refinement levels. Finally, it would
be interesting to attempt to extend the method described here to higher order, e.g.
fourth-order accuracy. A starting point for this could be the finite-volume formulation
of fourth-order Mehrstellen methods in [BC].

Acknowledgments

We would like to thank Adam Arkin, Matt Onsum, and David Adalsteinsson for help
with generating the neutrophil geometry. Dan Graves, Dan Martin, Ted Sternberg,
and Brian Van Straalen contributed helpful ideas as well as information about the
Chombo software library.

16

References

[BC] M. Barad and P. Colella. A fourth order accurate adaptive mesh refinement
method for Poisson’s equation. Submitted for publication, 2004.

[CGKM] P. Colella, D.T. Graves, B.J. Keen, and D. Modiano. A Cartesian grid embedded
boundary method for hyperbolic conservation laws. Submitted for publication,
2004.

[JC98] H. Johansen and P. Colella. A Cartesian grid embedded boundary method
for Poisson’s equation on irregular domains. J. Comput. Phys., 147(2):60–85,
December 1998.

[Joh97] Hans Svend Johansen. Cartesian Grid Embedded Boundary Finite Difference
Methods for Elliptic and Parabolic Partial Differential Equations on Irregular
Domains. PhD thesis, University of California, Berkeley, 1997.

[MCJ01] P. McCorquodale, P. Colella, and H. Johansen. A Cartesian grid embedded
boundary method for the heat equation on irregular domains. J. Comput. Phys.,
173:620–635, November 2001.

[TGA96] E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, l0-stable methods
for the heat equation with time-dependent boundary conditions. Advances in
Computational Mathmatics, 6:333–352, 1996.

17

16 32 64 128 256
10−3

10−2

10−1

100

101

102

Grid Size

Tr
un

ca
tio

n
E

rr
or

Fig. 5. Truncation error for Neumann boundary conditions. The symbol 2 denotes the L1

norm. The ∗ denotes L2, and the 3 denotes the max norm. The reference line for first order
is given by −−, and the reference line for second order is shown with · − ·.

18

16 32 64 128 256
10−3

10−2

10−1

100

101

102

Grid Size

Tr
un

ca
tio

n
E

rr
or

Fig. 6. Truncation error for Dirichlet boundary conditions.The symbol 2 denotes the L1

norm. The ∗ denotes L2, and the 3 denotes the max norm. The reference line for first order
is given by −−, and the reference line for second order is shown with · − ·.

19

64 128 256
10−7

10−6

10−5

10−4

10−3

10−2

Grid Size

G
ra

di
en

t E
rr

or

Fig. 7. Convergence of the first component of the gradient of the solution to Poisson’s
equation with Dirichlet boundary conditions, using (8) to compute the flux. Notation as in
figure 6.

20

64 128 256
10−6

10−5

10−4

10−3

10−2

10−1

Grid Size

G
ra

di
en

t E
rr

or

Fig. 8. Convergence of the first component of the gradient of the solution to Poisson’s
equation conditions, using (10) to compute the flux on the boundary. Notation as in figure
6.

21

Fig. 9. Solution error for Poisson’s problem on a 643 grid.

22

Fig. 10. Solution error for Poisson’s problem on a 643 grid.

23

0 5 10 15 20 25
10−12

10−10

10−8

10−6

10−4

10−2

100

102

V Cycle Iteration

R
es

id
ua

l

Fig. 11. Plot of the max norm of the partial volume-weighted residual versus V-cycle itera-
tion. The graphs are for meshes of size 64 (2), 128 (∗), and 256 (· − ·).

24

0 2 4 6 8 10 12 14
10−12

10−10

10−8

10−6

10−4

10−2

100

102

W Cycle Iteration

R
es

id
ua

l

Fig. 12. Plot of the max norm of the partial volume-weighted residual versus W-cycle
iteration. The graphs are for meshes of size 64(2), 128(∗), and 256(· − ·).

25

64 128 256

10−3

10−2

10−1

100

Grid Size

S
ol

ut
io

n
E

rr
or

Fig. 13. Solution error for Poisson’s equation with Dirichlet boundary conditions. Notation
as in figure 6.

26

64 128 256

10−3

10−2

10−1

100

Grid Size

S
ol

ut
io

n
E

rr
or

Fig. 14. Solution error for Poisson’s equation with Neumann boundary conditions. Notation
as in figure 6.

27

64 128 256
10−6

10−5

10−4

10−3

Grid Size

S
ol

ut
io

n
E

rr
or

Fig. 15. Solution error for heat equation on the Neutrophil geometry with Neumann bound-
ary conditions. Notation as in figure 6.

28

16 32 64 128 256
10−9

10−8

10−7

10−6

10−5

10−4

Grid Size

S
ol

ut
io

n
E

rr
or

Fig. 16. Solution error for heat equation on a moving domain with Neumann boundary
conditions. Notation as in figure 6.

29

16 32 64 128 256
10−9

10−8

10−7

10−6

10−5

10−4

Grid Size

S
ol

ut
io

n
E

rr
or

Fig. 17. Solution error for heat equation on a moving domain with Dirichlet boundary
conditions. Notation as in figure 6.

30

Fig. 18. Solution error for heat equation for the 2563 Neutrophil Geometry.

31

Fig. 19. Solution for heat equation for the 2563 Neutrophil Geometry.

32

